-
INTRODUCTION TO DATA SCIENCE 4
-
Lecture1.1
-
Lecture1.2
-
Lecture1.3
-
Lecture1.4
-
Lecture1.5
-
Lecture1.6
-
Lecture1.7
-
-
Fundamentals of Math and Probability 6
INTRODUCTION TO STATISTICS
-
Lecture2.1
-
Lecture2.2
-
Lecture2.3
-
Lecture2.4
-
Lecture2.5
-
Lecture2.6
-
-
Descriptive Statistics 4
-
Lecture3.1
-
Lecture3.2
-
Lecture3.3
-
Lecture3.4
-
-
Inferential Statistics 17
-
Lecture4.1
-
Lecture4.2
-
Lecture4.3
-
Lecture4.4
-
Lecture4.5
-
Lecture4.6
-
Lecture4.7
-
Lecture4.8
-
Lecture4.9
-
Lecture4.10
-
Lecture4.11
-
Lecture4.12
-
Lecture4.13
-
Lecture4.14
-
Lecture4.15
-
Lecture4.16
-
Lecture4.17
-
-
Hypothesis Testing 6
-
Lecture5.1
-
Lecture5.2
-
Lecture5.3
-
Lecture5.4
-
Lecture5.5
-
Lecture5.6
-
-
Introduction to Machine Learning 6
UNDERSTANDING AND IMPLEMENTING MACHINE LEARNING
-
Lecture6.1
-
Lecture6.2
-
Lecture6.3
-
Lecture6.4
-
Lecture6.5
-
Lecture6.6
-
-
Linear Regression 6
-
Lecture7.1
-
Lecture7.2
-
Lecture7.3
-
Lecture7.4
-
Lecture7.5
-
Lecture7.6
-
-
Logistic Regression 7
-
Lecture8.1
-
Lecture8.2
-
Lecture8.3
-
Lecture8.4
-
Lecture8.5
-
Lecture8.6
-
Lecture8.7
-
-
Decision Trees 10
-
Lecture9.1
-
Lecture9.2
-
Lecture9.3
-
Lecture9.4
-
Lecture9.5
-
Lecture9.6
-
Lecture9.7
-
Lecture9.8
-
Lecture9.9
-
Lecture9.10
-
-
Unsupervised Learning 10
-
Lecture10.1
-
Lecture10.2
-
Lecture10.3
-
Lecture10.4
-
Lecture10.5
-
Lecture10.6
-
Lecture10.7
-
Lecture10.8
-
Lecture10.9
-
Lecture10.10
-
-
1. Python Introduction (PART C – PYTHON PROGRAMMING) 3
-
Lecture11.1
-
Lecture11.2
-
Lecture11.3
-
-
2. Basics 6
-
Lecture12.1
-
Lecture12.2
-
Lecture12.3
-
Lecture12.4
-
Lecture12.5
-
Lecture12.6
-
-
3. Data Structures 5
-
Lecture13.1
-
Lecture13.2
-
Lecture13.3
-
Lecture13.4
-
Lecture13.5
-
-
4. Functions and Modules 6
-
Lecture14.1
-
Lecture14.2
-
Lecture14.3
-
Lecture14.4
-
Lecture14.5
-
Lecture14.6
-
-
Functional programming 4
-
Lecture15.1
-
Lecture15.2
-
Lecture15.3
-
Lecture15.4
-
-
6. File Handling and external integrations 5
-
Lecture16.1
-
Lecture16.2
-
Lecture16.3
-
Lecture16.4
-
Lecture16.5
-
-
7. Python for Data Science 6
-
Lecture17.1
-
Lecture17.2
-
Lecture17.3
-
Lecture17.4
-
Lecture17.5
-
Lecture17.6
-
-
PART D – BIG DATA 9
1. Understanding Big Data and Hadoop
-
Lecture18.1
-
Lecture18.2
-
Lecture18.3
-
Lecture18.4
-
Lecture18.5
-
Lecture18.6
-
Lecture18.7
-
Lecture18.8
-
Lecture18.9
-
-
2. HDFS Architecture 4
-
Lecture19.1
-
Lecture19.2
-
Lecture19.3
-
Lecture19.4
-
-
3. Map Reduce 6
-
Lecture20.1
-
Lecture20.2
-
Lecture20.3
-
Lecture20.4
-
Lecture20.5
-
Lecture20.6
-
-
4. Advanced Map Reduce 8
-
Lecture21.1
-
Lecture21.2
-
Lecture21.3
-
Lecture21.4
-
Lecture21.5
-
Lecture21.6
-
Lecture21.7
-
Lecture21.8
-
-
5. Pig 8
-
Lecture22.1
-
Lecture22.2
-
Lecture22.3
-
Lecture22.4
-
Lecture22.5
-
Lecture22.6
-
Lecture22.7
-
Lecture22.8
-
-
6. Hive 8
-
Lecture23.1
-
Lecture23.2
-
Lecture23.3
-
Lecture23.4
-
Lecture23.5
-
Lecture23.6
-
Lecture23.7
-
Lecture23.8
-
-
7. HBase 9
-
Lecture24.1
-
Lecture24.2
-
Lecture24.3
-
Lecture24.4
-
Lecture24.5
-
Lecture24.6
-
Lecture24.7
-
Lecture24.8
-
Lecture24.9
-
-
8. Sqoop and Flume 11
-
Lecture25.1
-
Lecture25.2
-
Lecture25.3
-
Lecture25.4
-
Lecture25.5
-
Lecture25.6
-
Lecture25.7
-
Lecture25.8
-
Lecture25.9
-
Lecture25.10
-
Lecture25.11
-
-
9. Kafka 13
-
Lecture26.1
-
Lecture26.2
-
Lecture26.3
-
Lecture26.4
-
Lecture26.5
-
Lecture26.6
-
Lecture26.7
-
Lecture26.8
-
Lecture26.9
-
Lecture26.10
-
Lecture26.11
-
Lecture26.12
-
Lecture26.13
-
-
10. Oozie 7
-
Lecture27.1
-
Lecture27.2
-
Lecture27.3
-
Lecture27.4
-
Lecture27.5
-
Lecture27.6
-
Lecture27.7
-
-
11. Spark 15
-
Lecture28.1
-
Lecture28.2
-
Lecture28.3
-
Lecture28.4
-
Lecture28.5
-
Lecture28.6
-
Lecture28.7
-
Lecture28.8
-
Lecture28.9
-
Lecture28.10
-
Lecture28.11
-
Lecture28.12
-
Lecture28.13
-
Lecture28.14
-
Lecture28.15
-
-
12. Scala 11
-
Lecture29.1
-
Lecture29.2
-
Lecture29.3
-
Lecture29.4
-
Lecture29.5
-
Lecture29.6
-
Lecture29.7
-
Lecture29.8
-
Lecture29.9
-
Lecture29.10
-
Lecture29.11
-
-
Real Time Project 0
No items in this section -
Resume Preparation Tips 0
No items in this section -
Interview Guidance and Support 0
No items in this section
This content is protected, please login and enroll course to view this content!
Prev
• Data visualization
Next
What is Data?
5 Comments
Eminent It Info is the best big data with data science in Bangalore for learning as well as for placement. They trained me for an interview as well as making the resume and finally, we are selected in the campus placement. Thanks a lot, Eminent It Info for helping me with all these things.
I have just completed my course from data science with big data in eminent it info
I had really a good experience in life.
I don’t know how soon one and half years passed. the course coordinator was also very cooperative the course material provided is very exhausting area prepares the students both from theoretical and practical aspects.